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Objective: To examine the effects of action recommendation 
and action implementation automation on performance, workload, 
situation awareness (SA), detection of automation failure, and 
return- to- manual performance in a submarine track management 
task.

Background: Theory and meta- analytic evidence suggest that 
with increasing degrees of automation (DOA), operator perfor-
mance improves and workload decreases, but SA and return- to- 
manual performance declines.

Method: Participants monitored the location and heading of 
contacts in order to classify them, mark their closest point of ap-
proach (CPA), and dive when necessary. Participants were assigned 
either no automation, action recommendation automation, or action 
implementation automation. An automation failure occurred late in 
the task, whereby the automation provided incorrect classification 
advice or implemented incorrect classification actions.

Results: Compared to no automation, action recommenda-
tion automation benefited automated task performance and low-
ered workload, but cost nonautomated task performance. Action 
implementation automation resulted in perfect automated task 
performance (by default) and lowered workload, with no costs to 
nonautomated task performance, SA, or return- to- manual perfor-
mance compared to no automation. However, participants provided 
action implementation automation were less likely to detect the au-
tomation failure compared to those provided action recommenda-
tions, and made less accurate classifications immediately after the 
automation failure, compared to those provided no automation.

Conclusion: Action implementation automation produced 
the anticipated benefits but also caused poorer automation failure 
detection.

Application: While action implementation automation may be 
effective for some task contexts, system designers should be aware 
that operators may be less likely to detect automation failures and 
that performance may suffer until such failures are detected.

Keywords: automation, situation awareness, 
workload, return- to- manual control, submarine track 
management

Humans increasingly need to interact with auto-
-

device or system that accomplishes a function 
that was previously, or conceivably could be, 
carried out by a human operator” (Parasuraman 
et al., 2000, p. 287). Examples include diag-

recommender systems in unmanned vehicle 
control. Reliable automation usually exceeds 
operator manual performance and can reduce 
operator workload (Onnasch et al., 2014). 
However, automation can also reduce operators’ 
understanding of a task, their ability to antic-
ipate future events (situation awareness [SA]; 
Endsley, 1988), and impair return- to- manual 
performance if automation unexpectedly fails.

-
tematically depending on the degree of auto-
mation (DOA). DOA orders the level of 
automation support (complete manual control 
to complete autonomy; Sheridan & Verplank, 
1978) by four stages of information processing: 
information acquisition, information analysis, 
action recommendation, and action implemen-
tation (Parasuraman et al., 2000). Thus, higher 
levels and later stages of automation increase 
the DOA. A meta- analysis by Onnasch et al. 
(2014) found that increased DOA improves per-
formance and reduces workload, but costs SA 
and return- to- manual performance (labeled the 

Onnasch et al. (2014) also 

begins to support action recommendation, after 
which costs of automation are more likely to 
drastically increase.

We recently published two papers examining 
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track management (Chen et al., 2017; Tatasciore 
et al., 2020). Here, participants monitored 

location and heading of contacts in relation 
to the participant’s submarine, referred to as 

showed contact bearings over time) in order to 

closest point of approach (CPA; detecting when 
contacts turned away from Ownship), and 
deciding when Ownship should dive.

Tatasciore et al. (2020) automated the classi-

DOA. Low DOA supported information acqui-
sition and analysis by displaying how long 

-
cation) and by tracking contact heading changes 
(CPA). High DOA provided this same informa-
tion, but also gave action recommendations 

occurrence. The dive task was never automated. 
Automation failed late in the experiment, either 

Wickens 
et al., 2015). Low DOA participants experi-
enced only an automation gone failure, whereas 
high DOA participants experienced either an 
automation gone or automation wrong fail-
ure. Participant detection of an automation 
wrong failure resulted in the automation being 
removed and manual control resumed.

Under routine states (when automation was 
reliably functioning), Tatasciore et al. (2020) 

and CPA performance and reduced workload, 
compared to low DOA and no automation. 
However, during routine states, both low and 
high DOA impaired nonautomated dive task 
performance compared to no automation. Only 
low DOA impaired SA compared to no automa-
tion. Following an automation gone failure, low 
DOA participants experienced increased work-
load, but return- to- manual performance for both 
low and high DOA participants was comparable 
to no automation. High DOA participants who 
experienced the automation wrong failure took 
~3 min to detect it. When the automation wrong 

failure was detected and high DOA removed, 
return- to- manual performance was comparable 

the automation wrong failure for high DOA 
compared to no automation. It was concluded 

-
pared to low DOA, at no extra cost.

is notable that the majority of studies in the 
Onnasch et al. (2014) meta- analysis used rel-

control, unmanned vehicle control, and driving. 
In contrast, emulating submarine control room 
operational settings (Kirschenbaum, 2011; 
Roberts et al., 2017), contacts and their tracks 
in the track management task move very slowly 
on operators’ displays. Thus, while high DOA 
may have reduced the extent to which partici-

poorer dive task performance), the slow pace 
of the task might have allowed participants to 
retain SA and the ability to return- to- manual 
performance.

If this conjecture is accurate, it raises the 
question of whether it would be better to provide 
action implementation automation (full DOA), 
rather than just action recommendation automa-
tion (high DOA), in slowly evolving task envi-
ronments such as submarine track management. 
Under routine states, full DOA would yield 
perfect performance on automated tasks and 
should reduce workload more than high DOA. 
If this could be achieved without further costs to 
nonautomated task performance, SA, or greater 
impairment when automation fails compared to 
high DOA, full DOA has the potential to pro-

Wickens, 2018)—that is, 

without extra costs.
To determine whether this is possible, the 

and full DOA on automated task performance, 
workload, nonautomated task performance, 
SA, automation failure detection, and return- 
to- manual performance. High DOA repli-
cated Tatasciore et al. (2020), while full DOA 
provided the same action recommendations, 
but also implemented these actions for the 
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examine whether: (a) full DOA reduces work-
load and increases costs to nonautomated task 
performance, SA, or return- to- manual perfor-
mance compared to high DOA; (b) full DOA 
reduces the speed or accuracy of detecting auto-
mation wrong failures compared to high DOA; 

after an automation failure compared to high 
DOA and no automation; and (d) the extent 
to which the impact of high DOA reported by 

Tatasciore et al. (2020), when compared to no 
automation, could be replicated.

PREDICTIONS
Predictions are outlined in Table 1 and 

detailed below.

Automated Task Performance
Compared to no automation, high DOA 

TABLE 1: Predictions Regarding the Effects of DOA as a Function of Automation State

Task Performance During 
Automation Working 
(Routine State)

Performance Immediately 
After Automation Failure

Performance After 
Automation Failure 
Detected (Removal State)

Classification       

  Accuracy None < High < Full* (the 
higher the DOA, the better 
the accuracy)

[None = High] > Full (poorer 
accuracy immediately after 
failure with full DOA)

[None = High] > Full (lower 
accuracy after full DOA 
removal)

  RT None > High > Full* (the 
higher the DOA, the faster 
the decisions)

[None = High] < Full (slower 
RT immediately after 
failure with full DOA)

[None = High) < Full 
(slower decisions after 
full DOA removal)

CPA       

  Accuracy None < High < Full* (the 
higher the DOA, the better 
the accuracy)

  [None = High] > Full (lower 
accuracy after full DOA 
removal)

  RT None > High > Full* (the 
higher the DOA, the faster 
the decisions)

  [None = High] < Full 
(slower decisions after 
full DOA removal)

Dive       

  Accuracy [None = Full] > High (poorer 
accuracy with high DOA)

  None = High = Full (no 
RTM effects)

  RT None = High = Full (no 
difference in RT)

  None = High = Full (no 
RTM effects)

Workload None > High > Full (the 
higher the DOA, the lower 
the workload)

  [None = High] < Full 
(higher workload after 
full DOA removal)

SA [None = High] > Full (poorer 
SA with full DOA)

  [None = High] > Full 
(poorer SA after full DOA 
removal)

Note. CPA = closest point of approach; DOA = degree of automation; Full = full DOA; High = high DOA; RT = 
response time; RTM = return- to- manual; Routine = reliable automation; Removal = point after the automation 
failure is detected by participant and the automation subsequently removed; None = no automation; SA = 
situation awareness.
*Note that by definition, classification and CPA will be perfect with the use of full DOA when automation is 
reliable during routine states.
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accuracy and response times (RTs) similar 
to those reported by Tatasciore et al. (2020). 
Following automation removal (i.e., after the 
automation failure is detected and automation 
removed), we expected no return- to- manual 

high DOA based on Tatasciore et al. (2020). 

-
cation and CPA tasks for full DOA, given that 
we are further crossing the lumberjack critical 
boundary (Onnasch et al., 2014).

Nonautomated Task Performance
Replicating Tatasciore et al. (2020), we 

expected a cost to nonautomated dive task accu-
racy during routine states for high DOA com-
pared to no automation. However, we expected 

full DOA and no automation, and better dive task 
accuracy for full DOA than high DOA, because the 
dive task is the sole manual task when full DOA 
is available. Furthermore, based on Tatasciore 
et al. (2020), we did not expect return- to- manual 
costs following high or full DOA removal.

Workload
On the basis of Tatasciore et al. (2020), we 

expected reduced workload with increased 
DOA and no return- to- manual costs to work-
load when high DOA was removed. However, 
given that we are further crossing the lumber-
jack critical boundary (Onnasch et al., 2014), 
we expected workload to be higher when full 
DOA was removed compared to no automation, 
and when high DOA was removed.

Situation Awareness
Replicating Tatasciore et al. (2020), we 

expected no cost to SA for high DOA compared 
to no automation before or after automation 
removal. Based on Onnasch et al. (2014), we 
expected SA to be lower for full DOA compared 
to no automation and high DOA both before and 
after automation removal.

Automation Failure Detection and 
Performance Immediately After  
the Failure

Tatasciore et al. (2020) examined perfor-

immediately after both the automation gone and 
automation wrong failures and found no classi-

compared to no automation. However, based 
on Onnasch et al. (2014)

after the failure for full DOA compared to high 
DOA and no automation. We also expected the 
automation failure to be detected less often or 
more slowly for participants using full DOA 
compared to high DOA due to increased work-
load and reduced SA.

METHOD
Participants

One hundred and twenty- three (70 women, 
53 men) psychology students (age: M = 21.15 
years, SD = 5.18) from The University of 
Western Australia (UWA) volunteered for 
course credit and provided informed consent. 
Participants were randomly assigned to no auto-
mation (N = 40), high DOA (N = 40), or full 
DOA (N = 43) conditions. Research complied 
with the American Psychological Association 
Code of Ethics and was approved by the UWA 

Design
A mixed design was used, with the between- 

subjects factor being automation condition (no 
automation, high DOA, full DOA) and the 
within- subjects factor being automation state 
(routine, automation removal).

Simulated Submarine Track  
Management Task

The simulation comprised of the surface plot 
and waterfall displays (Figure 1). The surface 
plot presented a top- down view of the area with 
concentric rings representing distance from 
Ownship, and contact location and heading 
information. The waterfall display comprised 
a horizontal axis presenting contact bearings. 
Vertical lines (soundtracks) were presented on 
the waterfall display and grew downwards to 
show contact bearings and changes in bearings 
over time. At the bottom of the surface plot was 

indicated whether the automation was activated. 
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-
pants were instructed to click if they believed 
the automation had failed. If clicked after the 

tracking required” was presented. If clicked 
when automation was functioning reliably, it 

varied cyclically during each scenario, starting 
from a minimum of one, increasing to a max-
imum of eight, and then decreasing again to 
minimum three times during each scenario.

according to how long they spent within spe-

shallow dark blue area) if it spent two continuous 
-

face plot (Figure 1
it had not spent at least one continuous minute in 

4 min of its presentation. To assist with tracking 

how long contacts spent within regions, partici-
pants could manually place a horizontal line at the 
top of each soundtrack on the waterfall display 
when a contact entered a region. The contact was 

To detect enemies, participants could place a hori-
zontal line on the bottom of the soundtrack of con-

region. When this line reached 4 min, the contact 

When high DOA was available, horizontal 
lines were automatically placed on the soundtracks 

regions. To assist with classifying enemies, a hori-
zontal line was automatically placed at the bottom 
of the soundtrack when it reached the 4- min mark. 
In addition, a square box with a letter signifying 

each horizontal line (f = Friendly, m = Merchant, t 

to notify participants when a contact could be clas-
-

was identical to high DOA, except immediately 

An example scenario with high DOA active. The left display is the surface plot (bird’s- eye view 
of the area), and the right display is the waterfall. Presented on the waterfall display are soundtracks, which 
signify bearing changes over time. Up to eight contacts are displayed. Projecting from the center of each 
contact on the surface plot is a line that indicates the current heading of the contact. Also attached to each 
contact on the surface plot is a track history to represent contact heading changes (CPA task). Presented on the 
waterfall display are horizontal lines that are automatically placed to signify when a contact has entered an 

task actions. When no automation is provided, there are no track history lines, and horizontal lines are placed 
manually. . CPA = closest point of approach; DOA = degree of automation.
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the automation (full DOA) or participant (high 

soundtrack and the contact icon on the surface 
plot changed color (Friendly = green, Merchant = 
white, Trawler = blue, Enemy = red).

-
tion advice was provided for subsequently pre-

were placed either 30 s too early or late on the 

-
tion letter f, t, or e). Additionally, for full DOA, 
the automation implemented the incorrect clas-

soundtrack and icon color was incorrect. The type 

-
ment of horizontal timelines—either 30 s too early 
or late) assigned to each contact presented after the 
automation failure was random.

A CPA occurred when a contact that 
was heading toward Ownship subsequently 
turned away. Each contact had one CPA. 
Participants reported CPAs by marking a cross 
on the contact soundtrack on the waterfall dis-
play. With high DOA, each contact had a track 
history marked on the surface plot, minimiz-
ing the need for participants to track heading 

participants when a CPA occurred and contin-

Full DOA was identical to high DOA, except 
the automation immediately marked the CPA.

The dive task was never auto-
mated. Participants were required to click the 
dive button on the surface plot when all contacts 
on the surface plot were heading in the same 
direction, and one contact was heading directly 
toward Ownship. Each scenario contained 9–10 
dive windows of variable duration (10–30 s).

Measures

SA was mea-
sured using the Situation Awareness Global 
Assessment Technique (SAGAT; Endsley, 
1995). The simulation was paused, and both 
displays blanked and replaced with seven 

SAGAT queries, six times during each scenario. 

one of the contacts location on the surface plot. 
The next six queries targeted underlying infor-

CPA, and dive tasks. During a given SAGAT 
pause, all conditions received the same seven 
queries. Queries were taken from a pool of que-
ries (Table 2).

Technique (ATWIT; Stein, 1985) was pre-
sented on the surface plot once every minute. 
Participants had 10 s to rate their workload from 
1 to 10 (1–2 = very low, 3–5 = moderate, 6–8 = 
relatively high, 9–10 = very high). The National 
Aeronautics and Space Administration Task 
Load Index (NASA- TLX; Hart & Staveland, 
1987) was completed after each scenario.

Procedure
The experiment took 3 hr. First, participants 

completed 80 min of training (an audio- visual 
PowerPoint presentation explaining the tasks 
and measures, a 10- min narrated video show-
ing the simulation with no automation, and a 
27.5- min practice scenario with no automation). 
Following this, participants in the high and full 
DOA conditions watched a training presenta-

that although the automation was highly reli-
able, it may not be perfect, and were instructed 
to report any automation failures by clicking the 
fail button. Participants then completed three 
27.5- min scenarios. Each scenario contained 

was counterbalanced. For high and full DOA, 
the automation unexpectedly provided incorrect 
advice during the last scenario (10.38, 10.48, 
or 10.88 min into the scenario). The automa-
tion continued to provide incorrect advice until 
the failure was reported. Once a failure was 
reported, the automation was removed, and 

CPA tasks resumed.

RESULTS
The hit rates for each task were calculated as 

the number of correct task responses per scenario 
divided by the total number of task events. RTs 
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were based on correct responses. For the CPA 
task, a response was correct if the cross was 
marked on the correct soundtrack at any time 1.5 
s before or after the actual CPA event. If the cross 
was marked outside of this range, it was recorded 
as a false alarm. The exact number of contacts 
and events related to making a CPA false alarm 
was indeterminable. However, we reasoned that 
because a CPA false alarm was most likely to 
occur following contact course changes, a rea-
sonable estimate of the false alarm rate was the 
number of false alarms divided by the number of 
contact course changes, minus the total number 
of CPA events (see Chen et al., 2017; Tatasciore 
et al., 2020). CPA accuracy was calculated by 
subtracting the CPA false alarm rate from the hit 
rate. For the dive task, a false alarm was most 
likely during a contact course change, as contact 
course changes were a prerequisite for a dive 

window to be initiated. However, given that there 
were fewer dive windows than CPA events, and 
the rule that all contacts need to be heading in the 
same direction, it was unlikely that every course 
change would be mistaken as a dive window. 
Therefore, we calculated the dive false alarm 
rate as the number of false alarms divided by half 
the number of contact course changes, minus the 
total number of dive windows (Chen et al., 2017; 
Tatasciore et al., 2020). Dive accuracy was cal-
culated by subtracting the dive false alarm rate 
from the hit rate.

Table 3
intervals for performance, workload, and SA, 

and one third of last scenario when automa-
tion functioned as expected) and automation 
removal state (after automation failure was 
detected by participants and disengaged).

TABLE 2: SAGAT Queries Used to Measure Participant SA

SA Level SAGAT queries

1 Which vessel is currently in 
an X zone?

How many vessels are heading 
away from you?

How many vessels are 
currently facing the 
same direction?

Is vessel X currently in an X 
zone?

Is vessel X heading away from 
you?

Are any vessels heading 
directly toward you?

    How many vessels are 
heading away from 
you?

2 Has any vessel been in an 
X zone for more than 1 
min?

How many times has vessel X 
changed course?

Are any vessels heading 
in the same direction?

How many vessels are 
currently in an X zone?

Has vessel X had any kinks in its 
soundtrack?

Which vessel is currently 
heading toward you?

Which vessel most recently 
crossed a classification 
boundary?

    

      

3 Which unclassified vessel is 
most likely to be an X?

Could vessel X cross a 
boundary within 4 min 
time?

Which vessel would make a CPA 
if it turned to a heading of 
xxx?

Would a CPA be made for vessel 
X if it turned to a heading of 
xxx?

Would vessel X head 
directly toward you if it 
turned to a heading of 
xxx?

Note. CPA = closest point of approach; SA = situation awareness; SAGAT = Situation Awareness Global 
Assessment Technique.
Retrieved from “The benefits and costs of low and high degree automation”, Tatasciore et al. (2020).
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To test our predictions for the automated tasks 

analyses for routine and automation removal 
states. The full DOA condition was not included 
in routine state analyses because the tasks were 
performed by the automation and were 100% 

-
cation and CPA performance for high DOA and 
no automation during routine states by conduct-
ing - tests, and for full DOA, high DOA, and no 
automation during the automation removal state 
using one- way analyses of variance (ANOVAs). 

with post- hoc - tests comparing the three con-
ditions to each other, corrected for family- wise 
error by reporting Bonferroni p values (p values 
multiplied by three, the number of comparisons 
for each dependent variable).

To test our predictions for nonautomated 
dive task performance, workload, and SA, we 
ran Automation Condition (no automation, high 
DOA, full DOA) × Automation State (routine, 
automation removal) mixed ANOVAs (Table 4). 

followed up as described above.
To test our predictions regarding the associa-

tion between automation condition and automa-
tion failure detection accuracy and RT, we ran 

test, respectively. Furthermore, to test our pre-

(accuracy and RT) immediately after the auto-
mation failure, we ran Automation Condition 
(no automation, high DOA, full DOA) × 

after failure) mixed ANOVAs.
Estimates of Cohen’s  indicate we had a 

power of 0.82 to detect the medium- to- large 
Cohen 

(1988); Tatasciore et al. (2020).

Automated Task Performance

During routine states, high 
-

rate, (78) = 4.42, p < .001,  = .99, and faster, 

TABLE 4: Inferential Statistics for Nonautomated Performance, Subjective Workload, and Situation 
Awareness by Condition and Automation State

Dependent Variable Effect F df p
 η  

Dive (Hit- FA) Condition 7.25 (1, 107) .001* .12

State 3.44 (1, 107) .07 .03

Condition  ×  State .34 (1, 107) .71 .01

Dive (RT) Condition 5.29 (1,102) .01* .09

State .00 (1, 102) .99 <.01

Condition  ×  State .60 (1, 102) .55 .01

NASA- TLX Condition 2.58 (1, 108) .08 .05

State 12.84 (1, 108) <.001* .11

Condition  ×  State 7.38 (1, 108) <.001* .12

ATWIT Condition 3.02 (1, 106) .05* .05

State 67.22 (1, 106) <.001* .39

Condition  ×  State 18.08 (1, 106) <.001* .25

SAGAT (Accuracy) Condition .81 (1, 104) .45 .02

State 2.22 (1, 104) .14 .01

Condition  ×  State 3.31 (1, 104) .04* .02

Note. ATWIT = Air Traffic Workload Input Technique; FA = false alarm; NASA- TLX = National Aeronautics and 
Space Administration Task Load Index; RT = response time; SAGAT = Situation Awareness Global Assessment 
Technique.
*p < .05.
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(78) = 5.54, p < .001, 
than no automation participants. For automation 

-
racy, F(2,107) = 2.81, p = .07,  η   = .05, or RTs, 
F(2,107) = 1.75, p = .18,  η   = .03.

-
tion accuracy and RT during routine states, and 
there were no return- to- manual costs for either 
high or full DOA.

During routine states, high DOA par-
ticipants made more accurate, (78) = 7.56, p < 
.001,  = 1.69, and faster, (78) = 2.30, p = .02, 

 = .52, CPA decisions than no automation par-
ticipants. For automation removal states, there 

F < 1, or RTs, 
F(2,102) = 1.15, p = .32,  η   = .02.

-
racy and RT during routine states, and there 
were no return- to- manual costs for either high 
or full DOA.

Nonautomated Task Performance

Table 4) showed that during 
routine states, high DOA participants made less 
accurate dive decisions than no automation partic-
ipants, (78) = 3.25, p = .003,  = .73. No other 

p > .17,  < .46). 
For automation removal states, following up the 

(73) = 2.93, p = .01,  = .68, and less accurate, 
(75) = 3.60, p = .003,  = .82, dive decisions than 

no automation participants. No other accuracy or 
 < 1.95, p > 

.16).
In summary, high DOA lead to poorer dive 

task performance during both routine and auto-
mation removal states. However, there were 
no comparable decrements to dive task perfor-
mance for the full DOA condition during either 
routine or automation removal states.

Workload

State interactions for ATWIT and NASA- TLX 
showed that during routine states, there was a 

conditions, F(2,120) = 15.50, p < .001,  η   = .21. 

High DOA participants, (78) = 4.33, p < .001, 
 = .97, and full DOA participants, (81) = 5.41, 
p = .003,  = 1.19, reported lower workload on 
the ATWIT than no automation participants, but 

DOA,  < 1. For the NASA- TLX, there was also 

conditions, F(2,120) = 5.01, p = .01,  η   = .08. 
Full DOA participants reported lower workload 
than no automation participants, (81) = 3.13, 
p = .01,  = .69. No other comparisons were 

 < 1.90, p > .17). For automation 

conditions for either the ATWIT or NASA- 
TLX, F < 1.

In summary, full DOA reduced workload 
during routine states compared to no automa-
tion as measured by both ATWIT and NASA- 
TLX, while high DOA reduced workload as 
measured by ATWIT but not the NASA- TLX. 
Neither DOA condition showed evidence for 
return- to- manual workload increases after auto-
mation removal.

Situation Awareness

State interaction for SAGAT showed that during 
-

F(2,120) = 2.84, 
p = .06,  η   = .05. For automation removal states, 

conditions, F < 1.

to SA with the use of high or full DOA during 
routine or automation removal states.

Automation Failure Detection and 
Performance Immediately After  
the Failure

The association between the type of automa-
tion and the successful detection of the automa-

2 = 5.58, p = 
.02 (Full DOA: 76.67% vs. High DOA: 95.0%). 

taken to correctly detect the automation wrong 
failure between the full DOA (M = 237.79s; CI 
[153.70, 321.88]) and high DOA (M = 192.91s; 
CI [118.30, 267.52]) conditions, U = 540.00, z 
= 1.00, p = .32, r = .12.
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We analyzed performance on the three clas-

automation failure (Figure 2

F(2,119) = 12.25, p < .001,  η   = .17, but no main 

(p > .36,  η   < .02). Follow- up tests indicated 
that full DOA participants were less accurate 
than no automation participants, (80) = 4.43, 
p < .001,  = 1.00. No other comparisons were 

 < 2.17, p

interactions, (p > .30,  η   < .06).
We also re- ran these analyses including only 

the subset of participants in the high (N = 24) 
and full DOA (N = 19) conditions that detected 

-
action (p > .11,  η   < .11). Thus, there was no 

the failure for participants that had detected the 
automation failure in the full DOA condition 
compared to the no automation condition.

-
diately after the automation failure was poorer 
for the full DOA compared to no automation 

condition. However, poorer performance was 
largely driven by participants who had not yet 
detected the automation failure.

DISCUSSION

Meta- analytic evidence suggests that 
increased DOA improves operator performance 
and reduces workload, but costs SA and return- 
to- manual performance, particularly when 
DOA crosses the critical boundary to action 
recommendation (Onnasch et al., 2014). In 
submarine control rooms, representations of 
contacts and their tracks evolve very slowly on 
displays (Kirschenbaum, 2011; Roberts et al., 
2017). Given our past research outcomes (Chen 
et al., 2017; Tatasciore et al., 2020) and that the 
majority of studies included in the Onnasch 
et al. (2014) meta- analysis used relatively fast 
evolving tasks, we wanted to explore whether 
we could achieve what Wickens (2018) referred 

action implementation automation without 

high (action recommendation) and full (action 
implementation) DOA on automated task per-
formance, subjective workload, nonautomated 
task performance, SA, and return- to- manual 
performance in a submarine track management 

. DOA = 
degree of automation; RT = response time.
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-
enced the ability to detect automation wrong 

automation failures across the full DOA, high 
DOA, and no automation conditions (Table 5 

As predicted, full DOA lowered partici-
pant workload compared to no automation. 
Additionally, full DOA did not cost dive task 
performance or SA compared to high DOA or 
no automation. That said, although there was no 
cost to dive task performance, it remains possi-
ble that full DOA participants were just as com-
placent as those with high DOA (Parasuraman 
& Manzey, 2010), but were possibly able to 
overcome this using the additional cognitive 
resources freed up by the full DOA. In con-

reported by Onnasch et al. (2014), participants 
provided full DOA were able to return- to- 
manual performance after knowing that auto-
mation was removed. We suggest that the slow 
nature of the submarine track management task 
may have allowed participants in the full DOA 
condition time to recover following automation 
removal.

In terms of automation failure, partici-
pants were less likely to detect automation 
wrong failures when using full DOA com-
pared to high DOA. Additionally, we found 

the automation failure was poorer in the full 
DOA condition compared to the no automa-
tion condition (post- hoc analyses indicated 
that this was largely driven by participants 
who had not yet detected the automation fail-

may indicate that participants using full DOA 
-

tion and CPA tasks as frequently or closely as 
those with high DOA, increasing the proba-
bility that they missed the automation contact 

was focused elsewhere (possibly focused on 
the dive task as discussed above).

Finally, comparisons between high DOA 
and no automation largely replicated Tatasciore 
et al. (2020) -

Jones 

et al., 2010; Pashler & Wagenmakers, 2012). We 

and CPA accuracy and RT, and lowered work-
load compared to no automation. There were 
also no return- to- manual performance costs for 

following removal of high DOA. However, as 
in Tatasciore et al. (2020), during routine states 
high DOA did degrade dive task performance, 
and in this current study this cost also continued 
after automation removal.

Practical Implications, Limitations, and 
Conclusions

The current data indicate that action imple-
-

workload, without costs to nonautomated dive 
task performance, SA, or return- to- manual 
performance after automation failure detec-
tion. However, participants provided action 

less likely to detect automation failures com-
pared to those provided action recommen-
dation automation. Almost 25% of action 
implementation participants did not detect 
automation failures even after 17 min. The 
consequence of this was that, until the auto-

performance was poorer for those using action 
implementation automation compared to no 
automation. In complex work environments, 
if automation fails, the operator’s ability to 
promptly detect the failure is critical. This is 
particularly true in faster evolving task envi-
ronments, or contexts with more time pressure 

control, unmanned vehicle control), where 
delays in noticing automation failures could 
be catastrophic (e.g., collision between the 
USS McCain and Tanker Alnic MC; National 
Transportation Safety Board, 2017). However, 
there are slowly evolving work domains, such 
as process control and nuclear power plants, in 
which operational parameters neglected due to 
undetected automation failures could quickly 
become irretrievably problematic or econom-
ically costly (e.g., restarting power plants; 
Muir & Moray, 1996).
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The simulated submarine track manage-
ment task used in the current experiment was 
designed in consultation with Royal Australian 
Navy Submariners. As such, the current exper-
iment has external validity as it is broadly rep-
resentative of work environments that require 
monitoring of demanding perceptual displays. 
Thus, although we concentrated on track man-

contexts, particularly those involving slowly 
evolving situations that require monitoring of 
multiple demanding displays (e.g., maritime 
surveillance). That said, there are potential 
issues in generalizing from novice participants 

in their experience, motivation, and cognition 
(for discussion see Jamieson & Skraaning, 
2020). Furthermore, we have not directly tested 
whether discrepancies between the current 

Onnasch et al. (2014) meta-analysis are due to 
the slow nature of the submarine track man-
agement task, or some other factor(s). Finally, 
we did not introduce participants to automation 
transitions during the practice scenario as we did 
not want participants to expect that automation 

Merlo et al., 2000). It may be the case that the 

when action implementation automation failed 
would be reduced if participants had practice 
with automation-manual transitions (see Zhang 
et al., 2019).

In conclusion, in our experiment, action 
implementation automation did not produce 

-
mance, SA, or return-to-manual performance, 
compared to action recommendation automa-
tion or no automation. However, participants 
provided action implementation automation 
were less likely to notice automation failures 
compared to those provided action recom-
mendation automation, and until they did so, 
were more likely to make inaccurate decisions 
compared to those provided no automation. 
This suggests that if automation failure detec-
tion could be improved, action implementation 
automation has the potential to provide the pro-

Wickens, 2018) in com-
plex task environments. 
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KEY POINTS

 Theory and meta- analytic evidence suggest that 
with increasing degrees of automation, operator 
performance improves and workload decreases, 
but situation awareness and return- to- manual 
performance can decline.

 In a slowly evolving simulated submarine track 
management task, relative to no automation, 

automated task performance and workload, but 
with costs to nonautomated task performance.

 Action implementation automation improved 
automated task performance and lowered work-
load, with no costs to nonautomated task perfor-
mance, situation awareness, or return- to- manual 
performance compared to no automation.

 Participants provided action implementation 
automation were poorer at detecting automation 
failures compared to participants provided action 
recommendation automation, and made less 
accurate decisions during the period immediately 
after the automation failure compared to partici-
pants provided no automation.

 -
tive for some task contexts, but system designers 
should be aware that operators may be less likely 
to detect automation failures and that perfor-
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